

Dynamics 动力学

Note

Newton's law of motion 牛顿定律:

初等数学	高等数学
$\sum \vec{F} = m\vec{a} = m \lim_{\Delta t \rightarrow 0} \frac{\Delta \vec{v}}{\Delta t}$	$\sum \vec{F} = m\vec{a} = m \frac{d\vec{v}}{dt}$

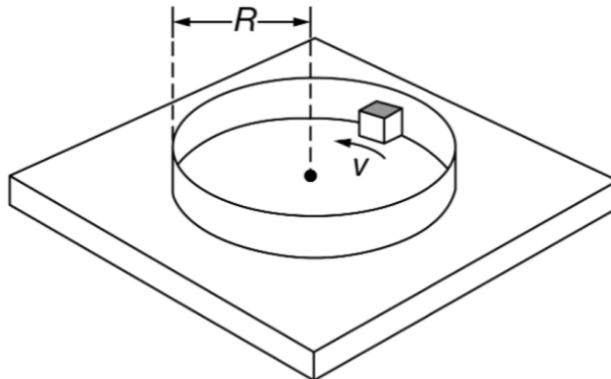
Example: A small block of mass m slide on a horizontal surface as it travels around the inside of a hoop of radius R . The coefficient of friction between the block and the wall is μ ; therefore, the speed v of the block decreases. In terms of m, R, μ, v , find expressions for each of the following.

(a) The friction force on the block

$$\text{Centripetal force } F_c = m \frac{v^2}{R}$$

$$\text{Frictional force } f = \mu F_c = \mu m \frac{v^2}{R}$$

(b) The block's tangential acceleration $a_t = \frac{dv}{dt}$



$$\text{Tangential force } F_t = -f = -\mu m \frac{v^2}{R} = ma_t \Rightarrow a_t = \frac{dv}{dt} = -\mu \frac{v^2}{R}$$

(c) The time required to reduce the speed of the block from an initial value v_0 to $v_0/2$

$$\frac{dv}{dt} = -\mu \frac{v^2}{R} \Rightarrow \frac{dv}{v^2} = \frac{-\mu}{R} dt$$

As time changes from 0 to t , velocity v changes from v_0 to $v_0/2$.

$$\int_{v_0}^{v_0/2} \frac{dv}{v^2} = \int_0^t \frac{-\mu}{R} dt \Rightarrow \left. \frac{v^{-1}}{-1} \right|_{v_0}^{v_0/2} = \left(\frac{-\mu}{R} t \right)_0^t \Rightarrow t = \frac{R}{\mu v_0}$$

Exercise 9: A time-dependent force, $\sum \vec{F} = (8.0\vec{i} - 4.0t\vec{j})N$, where t is in seconds, is exerted on a 2.0kg object initially at rest.

(a) At what time will the object be moving with a speed of 10.0 m/s?

(b) What total displacement has the object traveled through at this time?

(c) How far is the object from its initial position when its speed is 10.0m/s?

Exercise 10: A small block of mass m slides on a frictionless horizontal table. It is constrained to move inside a ring of radius R which is fixed to the table. At $t=0$, the block has a tangential velocity v_0 . The coefficient of friction between the block and the ring is μ . The velocity of the block at time t is?

Exercise 9: A time-dependent force, $\sum \vec{F} = (8.0\vec{i} - 4.0t\vec{j})N$, where t is in seconds, is exerted on a 2.0kg object initially at rest.

(d) At what time will the object be moving with a speed of 10.0 m/s?

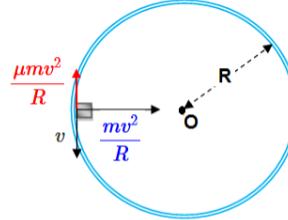
习题答案

$$\sum \vec{F} = m\vec{a} \Rightarrow \vec{a} = \frac{\sum \vec{F}}{m} = \frac{8.0\vec{i} - 4.0t\vec{j}}{2.0} = 4.0\vec{i} - 2.0t\vec{j} = \frac{d\vec{v}}{dt}$$

$$\int_0^v d\vec{v} = \int_0^t (4.0\vec{i} - 2.0t\vec{j}) dt \Rightarrow \vec{v} - 0 = 4.0t\vec{i} - t^2\vec{j}$$

$$|\vec{v}| = \sqrt{(4t)^2 + t^4} = 10.0 \Rightarrow t = 2.19 \text{ (s)}$$

(e) What total displacement has the object traveled through at this time?


$$\begin{aligned} \int_0^{\Delta r} d\vec{r} &= \int_0^t \vec{v} dt = \int_0^{2.19} (4.0t\vec{i} - t^2\vec{j}) dt \\ \Rightarrow \Delta \vec{r} &= \left(2.0t^2\vec{i} - \frac{t^3}{3}\vec{j} \right) \Big|_0^{2.19} = 9.61\vec{i} - 3.51\vec{j} \text{ (m)} \end{aligned}$$

(f) How far is the object from its initial position when its speed is 10.0m/s?

$$|\Delta \vec{r}| = \sqrt{9.61^2 + 3.51^2} = 10.2 \text{ (m)}$$

Exercise 10: A small block of mass m slides on a frictionless horizontal table. It is constrained to move inside a ring of radius R which is fixed to the table. At $t=0$, the block has a tangential velocity v_0 . The coefficient of friction between the block and the ring is μ . The velocity of the block at time t is?

$$\text{Centripetal force } F_c = m \frac{v^2}{R}$$

$$\text{Frictional force } f = \mu F_c = \mu m \frac{v^2}{R}$$

$$\text{Tangential force } F_t = -f = -\mu m \frac{v^2}{R} = ma_t \Rightarrow a_t = \frac{dv}{dt} = -\mu \frac{v^2}{R}$$

As time changes from 0 to t , velocity v changes from v_0 to v .

$$\begin{aligned} \int_{v_0}^v \frac{dv}{v^2} &= \int_0^t \frac{-\mu}{R} dt \Rightarrow \left. \frac{v^{-1}}{-1} \right|_{v_0}^v = \left(\frac{-\mu}{R} t \right)_0^t \\ \Rightarrow -\frac{1}{v} + \frac{1}{v_0} &= \frac{-\mu}{R} t \Rightarrow \frac{v_0 R}{R + v_0 \mu t} \end{aligned}$$